100% electronic current sensors

Capteurs de courant 100% électronique
Technical presentation summary

1 The customer’s needs
2 The aimed applications
3 The technology
4 The range
5 The main characteristics
6 The options and accessories
7 The electrical connections
8 The used standards
9 The technical documentation

1 The customers’ needs

- Price
- High quality
- High performances
- Reliability
- Compactness
- Latest standards
- Reliable supplier
2 The aimed applications

- Industrial applications
 - UPS, windmills, welding, electrolysis ...

- Traction applications
 - Sub-stations (mainly)...

First typical technology of substitution:
- To replace the entire function (shunt + isolation conditioner)

- Ratings targeted: 2 to 20 kA (Ipn)
- Markets: Industry & Traction
2 The aimed applications

- Other technologies to replace:
 - Depending on customer application, it is possible to use NCS instead of other current measurement technologies:
 - Closed loop Hall effect sensors
 - Open loop Hall effect sensors
 - Rogowski coils
 - Current transformers

- Specific applications:
 - Need of a large hole for a low nominal primary current:
 - Conductor in Aluminium (low current density)
 - Cable with thick insulation (medium voltage)
 - Several conductors through the hole
 - Specific bus bar dimensions
3 The technology

- Functionning principle
 - Application of the Ampere’s theorem:
 \[\oint_C \vec{H} \cdot d\vec{l} = I \]
 The integration of the magnetic field vector \(\vec{H} \) on a closed contour \(C \) leads to the primary current \(I \):

 \[\text{In the air: } \vec{B} = \mu_0 \cdot \vec{H} \]

- Technology:
 - Detection of the magnetic field with Hall effect probes
 - Full electronic concept (no magnetic core)

3 The technology

- Functionning principle
- Major function
 - To measure ac and dc high currents (\(> 2\text{kA} \))
3 The technology

- Major advantages of the NCS technology
 - Galvanic isolation
 - Wide continuous measuring range
 - No power dissipation (no heating)
4 The range

- General range presentation: markets & ratings

NCS125

Traction Industry

2…10kA

NCS165

Traction Industry

4…20kA

4 The range

- NCS range: NCS125 and NCS165 (2 sizes)
- Internal hole: 125 mm and 165 mm

<table>
<thead>
<tr>
<th>Hole (mm)</th>
<th>Ipmax (kA peak)</th>
<th>Is1 at Ip (mA peak)</th>
<th>Ipmax (kA peak)</th>
<th>Is2 at Ipmax (mA peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCS125-2</td>
<td>125</td>
<td>2</td>
<td>±20</td>
<td>10</td>
</tr>
<tr>
<td>NCS125-4</td>
<td>125</td>
<td>4</td>
<td>±20</td>
<td>20</td>
</tr>
<tr>
<td>NCS125-6</td>
<td>125</td>
<td>6</td>
<td>±20</td>
<td>30</td>
</tr>
<tr>
<td>NCS125-10</td>
<td>125</td>
<td>10</td>
<td>±20</td>
<td>30</td>
</tr>
<tr>
<td>NCS165-4</td>
<td>165</td>
<td>4</td>
<td>±20</td>
<td>20</td>
</tr>
<tr>
<td>NCS165-6</td>
<td>165</td>
<td>6</td>
<td>±20</td>
<td>30</td>
</tr>
<tr>
<td>NCS165-10</td>
<td>165</td>
<td>10</td>
<td>±20</td>
<td>30</td>
</tr>
<tr>
<td>NCS165-20</td>
<td>165</td>
<td>20</td>
<td>±20</td>
<td>40</td>
</tr>
</tbody>
</table>

- Important note: NCS sensors withstand Ipmax continuously
4 The range

- NCS range: NCS125 and NCS165 (2 sizes)
- Internal hole: 125 mm and 165 mm

<table>
<thead>
<tr>
<th>Hole (mm)</th>
<th>Ip (kA peak)</th>
<th>Vs1 at Ip (V peak)</th>
<th>Ipmax (kA peak)</th>
<th>Vs2 at Ipmax (V peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCS125-2</td>
<td>125</td>
<td>2 ±10</td>
<td>10</td>
<td>±10</td>
</tr>
<tr>
<td>NCS125-4</td>
<td>125</td>
<td>4 ±10</td>
<td>20</td>
<td>±10</td>
</tr>
<tr>
<td>NCS125-6</td>
<td>125</td>
<td>6 ±10</td>
<td>30</td>
<td>±10</td>
</tr>
<tr>
<td>NCS125-10</td>
<td>125</td>
<td>10 ±10</td>
<td>30</td>
<td>±10</td>
</tr>
<tr>
<td>NCS165-4</td>
<td>165</td>
<td>4 ±10</td>
<td>20</td>
<td>±10</td>
</tr>
<tr>
<td>NCS165-6</td>
<td>165</td>
<td>6 ±10</td>
<td>30</td>
<td>±10</td>
</tr>
<tr>
<td>NCS165-10</td>
<td>165</td>
<td>10 ±10</td>
<td>30</td>
<td>±10</td>
</tr>
<tr>
<td>NCS165-20</td>
<td>165</td>
<td>20 ±10</td>
<td>40</td>
<td>±10</td>
</tr>
</tbody>
</table>

- Important note: NCS sensors withstand Ipmax continuously

--

4 The range

- NCS125 and NCS165 standard current outputs:

© ABB Entrelec - 14 - NCS Presentation 1.1
Dec-2004

© ABB Entrelec - 15 - NCS Presentation 1.1
Dec-2004
4 The range

- NCS125 and NCS165 standard voltage outputs:

![Graph showing voltage outputs vs current]

- NCS125 and NCS165 standard secondary outputs:
 - Connector output *(industrial version only)*:
 - Is1: ±20mA @ Ip (peak value)
 - Is2: ±20mA @ Ipmax (peak value)
 - Vs1: ±10V @ Ip (peak value)
 - Vs2: ±10V @ Ipmax (peak value)
 - Cable output *(industrial and traction versions)*:
 - Is1: ±20mA @ Ip (peak value)
 - Is2: ±20mA @ Ipmax (peak value)
 - Or
 - Vs1: ±10V @ Ip (peak value)
 - Vs2: ±10V @ Ipmax (peak value)
4 The range

- Industrial and Traction main differences:

<table>
<thead>
<tr>
<th></th>
<th>Industry</th>
<th>Traction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>±15V to ±24V (±2%)</td>
<td>±24V (±25%)</td>
</tr>
<tr>
<td>Test voltage</td>
<td>5kV</td>
<td>20kV</td>
</tr>
<tr>
<td>Partial discharges</td>
<td>1.25kV</td>
<td>4.3kV</td>
</tr>
<tr>
<td>Creepage distance</td>
<td>14mm</td>
<td>195mm</td>
</tr>
<tr>
<td>Clearance distance</td>
<td>14mm</td>
<td>76mm</td>
</tr>
<tr>
<td>EMC (refer to type test report)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 The range

- NCS125 mechanical layout
4 The range

- NCS165 mechanical layout

4 The range

- Standard NCS range synthesis

 - **Traction**
 - 20kV
 - ±24V (±25%)
 - Connector version
 - Current & Voltage output
 - Cable version
 - Voltage output
 - **Industry**
 - 5kV
 - ±15...±24V (±2%)
 - Connector version
 - Current & Voltage output
 - Cable version
 - Current output
 - Voltage output
5 The main characteristics

- NCS125: main characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Unit</th>
<th>NCS125-2</th>
<th>NCS125-4</th>
<th>NCS125-6</th>
<th>NCS125-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. input current I_{pn} (continuously)</td>
<td>kA peak</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Max. input current I_{pmax} (continuously)</td>
<td>kA peak</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Max. not measurable overload</td>
<td>kA peak</td>
<td>40</td>
<td>80</td>
<td>120</td>
<td>200</td>
</tr>
<tr>
<td>Output current $I_{s1} @ I_{pn}$</td>
<td>mA peak</td>
<td></td>
<td></td>
<td></td>
<td>±20</td>
</tr>
<tr>
<td>Output current $I_{s2} @ I_{pmax}$</td>
<td>mA peak</td>
<td></td>
<td></td>
<td></td>
<td>±20</td>
</tr>
<tr>
<td>Output voltage $V_{s1} @ I_{pn}$</td>
<td>V peak</td>
<td></td>
<td></td>
<td></td>
<td>±10</td>
</tr>
<tr>
<td>Output voltage $V_{s2} @ I_{pmax}$</td>
<td>V peak</td>
<td></td>
<td></td>
<td></td>
<td>±10</td>
</tr>
<tr>
<td>Accuracy @ I_{pn} and @ +25°C</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td>±1</td>
</tr>
<tr>
<td>Delay time (typical)</td>
<td>µS</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>di/dt correctly followed</td>
<td>A/µS</td>
<td></td>
<td></td>
<td></td>
<td>< 100</td>
</tr>
<tr>
<td>Bandwidth (@-1dB)</td>
<td>kHz</td>
<td></td>
<td></td>
<td></td>
<td>0…10</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>kV; 50Hz; 1min</td>
<td></td>
<td></td>
<td></td>
<td>±15…±24</td>
</tr>
<tr>
<td>Power supply</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>±10</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>ºC</td>
<td></td>
<td></td>
<td></td>
<td>-40…+85</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>ºC</td>
<td></td>
<td></td>
<td></td>
<td>-50…+90</td>
</tr>
</tbody>
</table>

- For further requests, please contact us.

5 The main characteristics

- NCS165: main characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Unit</th>
<th>NCS165-4</th>
<th>NCS165-6</th>
<th>NCS165-10</th>
<th>NCS165-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. input current I_{pn} (continuously)</td>
<td>kA peak</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Max. input current I_{pmax} (continuously)</td>
<td>kA peak</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Max. not measurable overload</td>
<td>kA peak</td>
<td>80</td>
<td>120</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Output current $I_{s1} @ I_{pn}$</td>
<td>mA peak</td>
<td></td>
<td></td>
<td></td>
<td>±20</td>
</tr>
<tr>
<td>Output current $I_{s2} @ I_{pmax}$</td>
<td>mA peak</td>
<td></td>
<td></td>
<td></td>
<td>±20</td>
</tr>
<tr>
<td>Output voltage $V_{s1} @ I_{pn}$</td>
<td>V peak</td>
<td></td>
<td></td>
<td></td>
<td>±10</td>
</tr>
<tr>
<td>Output voltage $V_{s2} @ I_{pmax}$</td>
<td>V peak</td>
<td></td>
<td></td>
<td></td>
<td>±10</td>
</tr>
<tr>
<td>Accuracy @ I_{pn} and @ +25°C</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td>±1</td>
</tr>
<tr>
<td>Delay time (typical)</td>
<td>µS</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>di/dt correctly followed</td>
<td>A/µS</td>
<td></td>
<td></td>
<td></td>
<td>< 100</td>
</tr>
<tr>
<td>Bandwidth (@-1dB)</td>
<td>kHz</td>
<td></td>
<td></td>
<td></td>
<td>0…10</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>kV; 50Hz; 1min</td>
<td></td>
<td></td>
<td></td>
<td>±15…±24</td>
</tr>
<tr>
<td>Power supply</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>±10</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>ºC</td>
<td></td>
<td></td>
<td></td>
<td>-40…+85</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>ºC</td>
<td></td>
<td></td>
<td></td>
<td>-50…+90</td>
</tr>
</tbody>
</table>

- For further requests, please contact us.
6 The options and accessories

NCS125 & NCS165: mechanical options
- Brackets
- For horizontal mounting
- For vertical mounting
- For fixing on a bus bar
- Bus bars

NCS125 & NCS165: terminals options
- Standard output connections:
 - 6 wire shielded cable (2 m)
 - 8 pin locable connector
- Optional output connections:
 - Other to be defined upon request
6 The options and accessories

- NCS125 & NCS165: electrical options
 - Specific gain for the output current Is
 - Specific gain for the output voltage Vs
 - Multiple output voltage or current
 - Output current 4-20 mA: see next page
 (with unipolar supply voltage 0...+15 to +24 Vdc)

6 The options and accessories

- NCS125 & NCS165
 - Optional output: current 4-20 mA

Is1 or Is2 for **ac** primary current

Is1 or Is2 for **dc** primary current
6 The options and accessories

- NCS125 & NCS165: the accessories

- Side plates kit (without bar)
- Female connector kit (set of 10 pieces)

7 The electrical connections

- NCS125 & NCS165: connection diagram

- Current
- Output

- Rm1 & Rm2 with Rmin: 0Ω and Rmax: 350Ω
7 The electrical connections

NCS125 & NCS165: connection diagram

Rm1 & Rm2 ≥ 10kΩ

8 The used standards: Industrial applications

EN50178 (Oct 1997)

Safety requirements

- Rated voltage: 1000V rms or 1500Vdc
- Pollution degree: PD2 (pollution normally conducting and random condensation)
- Insulation distance: OV3 (fixed installations with requirements of reliability and disponibility:
 - 14 mm air distance (reinforced insulation)
 - material group II (400≤CTI<600)
- Creepage distance: 14.2mm (reinforced insulation) with grooves having minimum 2 mm
- Partial discharges: 1.25kV (10pC)
8 The used standards: Industrial applications

- EN50178 (Oct 1997)….
- Environmental requirements
 - Climatic
 - Tab 6, class 2K3
 - -20…+70°C
 - 95% relative humidity
 - max 60gr of water / m³
 - 70 à 106kPa
 - EMC
 - design and tests in accordance with EN61000-6-2 and EN61000-6-4

- Testing (see details in the concerned Type Test Report)
 - Functioning
 - @ +25°C, @-40°C, @+85°C
 - delay time
 - di/dt
 - bandwidth
 - overload
 - magnetic environment
 - Other climatic tests
 - salt mist
 - humid heat
 - storage
8 The used standards: Industrial applications

- **EN50178 (Oct 1997)…**
 - Testing (see details in the concerned Type Test Report)
 - Dielectric: dielectric test, insulation resistance, dielectric overload, partial discharges
 - EMC (immunity): burst
 - **EN61000-6-2**
 - surges, electrostatic discharges, conducted perturbations, electromagnetic fields, network magnetic fields

8 The used standards: Industrial applications

- **EN50178 (Oct 1997)…**
 - Testing (see details in the concerned Type Test Report)
 - EMC (emission): conducted, radiated
 - **EN61000-6-4**
 - Mechanical: vibrations, shocks
8 The used standards: railways applications

- **EN50155 (Dec 2002)**
 - Testing (see details in the concerned Type Test Report)
 - Functioning: @ +25°C, @-40°C, @+85°C
 - delay time
 - di/dt
 - bandwidth
 - overload
 - magnetic environment
 - power supply over/under voltage
 - Other climatic tests: salt mist
 - humid heat cycling
 - storage

8 The used standards: railways applications

- **EN50123-1 (May 1995)** for substations up to 3kVdc
 - Main requirements
 - Rated voltage \(U_N \): 3000Vdc
 - Max. repetitive Voltage \(U_{NM} \): 4800Vdc
 - Dielectric tests: 16.8kV (50Hz, 1min)
 - Air distance (outdoor): 76mm
 - Over voltage category: 0V3
 - Pollution degree: PD3A
8 The used standards: railways applications

- EN50163 (Nov 1995) for substations up to 3kVdc
 - Standard rated voltages
 - Rated voltage (U_N) | 750Vdc | 1500Vdc | 3000Vdc
 - U_{max1} (permanent) | 900Vdc | 1800Vdc | 3600Vdc
 - U_{max2} (max. 5 min) | 950Vdc | 1950Vdc | 3900Vdc
 - U_{max3} (20msec) | 1269Vdc | 2538Vdc | 5075Vdc

- EN50121-5 (Sep 2000) for substations up to 3kVdc
 - Electro-magnetic compatibility (see details in the concerned Type Test Report)
 - Immunity
 - burst
 - surges
 - electrostatic discharges
 - conducted perturbations
 - electromagnetic fields
 - network magnetic fields
 - Emission
 - conducted
 - radiated
8 The used standards: railways applications

- IEC61373 (Jan 1999) for ground mobile equipments
 - Vibrations and shocks (see details in the concerned Type Test Report)
 - Tests: random vibrations with functional sensor
 - Tests: random vibrations without functional sensor
 - Tests: shocks
 - Vibrations severity: class B

8 The used standards: railways applications

- EN50124-1 (Jan 1999)
 - Insulation coordination
 - Rated voltage: 3000Vdc
 - Pollution degree: PD3A (low conductivity and humidity with long term condensation)
 - Insulation distance: OV3 (same as OV4 with less requirements on over voltages, reliability & disponibility)
 - Insulation distance: 76 mm air distance (reinforced insulation)
 - Insulation distance: material group II (400≤CTI<600)
 - Creepage distance: 195mm (reinforced insulation) with grooves having minimum 2.5 mm
 - Partial discharges: 4.3kV (10pC)
8 The used standards: railways applications

- EN50121-3-2 (Sep 2000) for ground mobile equipments
 - Electro-magnetic compatibility (see details in the concerned Type Test Report)
 - Immunity & Emission: same as per EN50121-5 but with some higher levels during tests

9 The technical documentation

- Technical file
 - Technical presentation: this document
 - Mounting instructions
 - Data sheets
 - Type tests report
 - MTBF calculation
 - Fire/smoke certificate
 - Environmental certificate
As part of its on-going product improvement, ABB reverses the right to modify the characteristics of the products described in this document. The information given is not contractual. For further details please contact the Company marketing these products in your country.